Comparison of UV climates at Summit, Greenland; Barrow, Alaska and South Pole, Antarctica
نویسندگان
چکیده
An SUV-150B spectroradiometer for measuring solar ultraviolet (UV) irradiance was installed at Summit, Greenland, in August 2004. Here we compare the initial data from this new location with similar measurements from Barrow, Alaska and South Pole. Measurements of irradiance at 345 nm performed at equivalent solar zenith angles 5 (SZAs) are almost identical at Summit and South Pole. The good agreement can be explained with the similar location of the two sites on high-altitude ice caps with high surface albedo. Clouds have little impact at both sites, but can reduce irradiance at Barrow by more than 75%. Clear-sky measurements at Barrow are smaller than at Summit by 14% in spring and 36% in summer, mostly due to differences in surface 10 albedo and altitude. Comparisons with model calculations indicate that aerosols can reduce clear-sky irradiance at 345 nm by 4–6%; aerosol influence is largest in April. Differences in total ozone at the three sites have a large influence on the UV Index. At South Pole, the UV Index is on average 20–80% larger during the ozone hole period than between January and March. At Summit, total ozone peaks in April and UV 15 Indices in spring are on average 10–25% smaller than in the summer. Maximum UV Indices ever observed at Summit and South Pole are 6.7 and 4.0, respectively. The larger value at Summit is due to the site's lower latitude. For comparable SZAs, average UV Indices measured during October and November at South Pole are 1.9–2.4 times larger than measurements during March and April at Summit. Average UV Indices at 20 Summit are over 50% greater than at Barrow because of the larger cloud influence at Barrow.
منابع مشابه
Monitoring Aerosol Optical Depth at Barrow, Alaska and South Pole; Historical Overview, Recent Results,
Atmospheric aerosols affect the Earth's radiation budget through interactions with solar and terrestrial radiation. Various committees involved with assessing global climate change recognize that aerosols can significantly impact the earth’s radiation balance. In particular, the Scientific Committee on Antarctic Research has recommended the establishment of an international network of solar spe...
متن کاملArctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear Baseline Surface Radiation Network measurements
[1] This study analyzes diurnal and seasonal variations of snow albedo at four Baseline Surface Radiation Network stations in the Arctic and Antarctica from 2003 to 2008 to elucidate similarities and differences in snow albedo diurnal cycles across geographic zones and to assess how diurnal changes in snow albedo affect the surface energy budget. At the seasonal scale, the daily albedo for the ...
متن کاملPenetration depth of interferometric syntheticsaperture radar signals in snow and ice
Digital elevation models of glaciated terrain produced by the NASA/Jet Propulsion Laboratory (JPL) airborne interferometric synthetic-aperture radar (InSAR) instrument in Greenland and Alaska at the C(5.6 cm wavelength) and L-band (24-cm) frequencies were compared with surface elevation measured from airborne laser altimetry to estimate the phase center of the interferometric depth, or penetrat...
متن کاملSubmillimeter Atmospheric Transparency at Maunakea, at the South Pole, and at Chajnantor
For a systematic assessment of submillimeter observing conditions at different sites, we constructed tipping radiometers to measure the broad band atmospheric transparency in the window around 350μm wavelength. The tippers were deployed on Maunakea, Hawaii, at the South Pole, and in the vicinity of Cerro Chajnantor in northern Chile. Identical instruments permit direct comparison of these sites...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008